Performance Analysis of the Temperature and Humidity Profiles Retrieval for FY-3D/MWTHS in Arctic Regions

Author:

Zhang Lanjie,Tie Shengru,He Qiurui,Wang WenyuORCID

Abstract

The special geographical location of the polar regions increases the difficulty of modeling surface emissivity, thus the physical retrieval algorithms of the temperature and humidity profiles for microwave radiometers mainly focus on the regions between 60°S and 60°N. In this paper, the deep neural networks (DNN) and long short-term memory (LSTM) models are first implemented to retrieve atmospheric temperature and humidity profiles in real time from FY-3D/MWHTS in Arctic regions and are compared with the physical retrieval algorithm. The hyperparameters of the machine learning models are determined using the grid search and 10-fold cross-validation. Results show that, compared with the physical retrieval algorithm, the retrieval accuracies of the atmospheric temperature and humidity profiles of the DNN and LSTM models in June 2021 are higher over sea ice, and the maximum retrieval accuracies are improved by about 3.5 K and 42%. Over land, the retrieval accuracies of the atmospheric temperature profiles for the DNN and LSTM models in June 2021 are improved by about 5 K. The retrieved humidity results for these two models are not compared with the physical retrieval algorithm, which fails for the humidity profile retrieval over land. In addition, the retrieval results of the DNN-based and LSTM-based models using the independent validation data in February, April, and September are also evaluated over different surface types. The RMSEs of the retrieved temperature profiles for the two models are within 4 K, except for the near-surface, and the humidity profiles are within 25%, except for in February. The temperature profiles in September and the humidity profiles in February are somewhat reduced compared to other months because of the highly variable emissivity properties in autumn and winter. Overall results show that the machine learning method can well-evaluate the retrieval capability of FY-3D/MWHTS of the atmospheric temperature and humidity profiles in Arctic regions.

Funder

National Natural Science Foundation of China

Science and Technology Key Project of Henan Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3