Mobile Robot Path Planning Based on Improved Particle Swarm Optimization and Improved Dynamic Window Approach

Author:

Yang Zhenjian1,Li Ning1ORCID,Zhang Yunjie1ORCID,Li Jin1

Affiliation:

1. School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300000, China

Abstract

To enable mobile robots to effectively complete path planning in dynamic environments, a hybrid path planning method based on particle swarm optimization (PSO) and dynamic window approach (DWA) is proposed in this paper. First, an improved particle swarm optimization (IPSO) is proposed to enhance the exploration capability and search accuracy of the algorithm by improving the velocity update method and inertia weight. Secondly, a particle initialization strategy is used to increase population diversity, and an addressing local optimum strategy is used to make the algorithm overcome the local optimum. Thirdly, a method of selecting navigation points is proposed to guide local path planning. The robot selects the appropriate navigation points as the target points for local path planning based on the position of the robot and the risk of collision with dynamic obstacles. Finally, an improved dynamic window approach (IDWA) is proposed by combining the velocity obstacle (VO) with the DWA, and the evaluation function of the DWA is improved to enhance trajectory tracking and dynamic obstacle avoidance capabilities. The simulation and experimental results show that IPSO has greater exploration capability and search accuracy; IDWA is more effective in trajectory tracking and dynamic obstacle avoidance; and the hybrid algorithm enables the robot to efficiently complete path planning in dynamic environments.

Funder

Tianjin City Enterprise Science and Technology Specialists Project

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3