Sea Experimental for Compressive Sensing-Based Sparse Channel Estimation of Underwater Acoustic TDS-OFDM System

Author:

Junejo Naveed Ur Rehman12ORCID,Esmaiel Hamada13ORCID,Sattar Mariyam4ORCID,Sun Haixin1ORCID,Khalil Muhammad Amir2ORCID,Ullah Ihsan2ORCID

Affiliation:

1. Department of Information and Communication, School of Informatics, Xiamen University, Xiamen 316005, China

2. Deparment of Computer Engineering, The University of Lahore, 1-KM Defence Road, Lahore, Pakistan

3. Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt

4. Department of Mechanical Engineering, Institute of Space Technology, Islamabad, Pakistan

Abstract

Due to the high spectral efficiency (SE) and fast synchronization, the time-domain synchronization orthogonal frequency division multiplexing (TDS-OFDM) system has gotten much more attraction of researchers as compared to cyclic-prefix (CP) and zero padding (ZP) OFDM in terrestrial as well as underwater acoustic communication. Inter-block interference (IBI) degrades the TDS-OFDM performance due to its long-delay multiple channels. In TDS-OFDM, dual pseudo-random noise (DPN) sequences utilize two PN sequences as a guard interval (GI) after every data block to cope with interference from the OFDM data block to the next PN sequence resulting in compromising the energy efficiency (EE) and spectral efficiency. We have proposed compressed sensing-based technique compressive sensing matching pursuit (CoSaMP), orthogonal matching pursuit (OMP), and look-ahead and backtracking OMP (LABOMP) for TDS-OFDM over the real-time underwater channel in this paper. Moreover, prior to estimating the channel, the received PN sequence is considered in the time domain to compensate for the Doppler shift of the UWA channel. The real-time data experiment has been initially conducted for testing in a water tank in our laboratory. Furthermore, it has been tested on the sea for long communications under the water at the Wuyuan sea area in Xiamen, China. Simulations and experimental results evident that the compressed sensing techniques have better performance over the conventional TDS-OFDM and DPN-TDS-OFDM, even LABOMP outperform OMP and CoSaMP in terms of bit-error-rate (BER), SE, and EE.

Funder

Science, Technology & Innovation Funding Authority

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3