Downscaling and Projection of Multi-CMIP5 Precipitation Using Machine Learning Methods in the Upper Han River Basin

Author:

Xu Ren12ORCID,Chen Nengcheng23ORCID,Chen Yumin1,Chen Zeqiang23ORCID

Affiliation:

1. School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China

2. State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, China

3. Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China

Abstract

Downscaling considerably alleviates the drawbacks of regional climate simulation by general circulation models (GCMs). However, little information is available regarding the downscaling using machine learning methods, specifically at hydrological basin scale. This study developed multiple machine learning (ML) downscaling models, based on a Bayesian model average (BMA), to downscale the precipitation simulation of 8 Coupled Model Intercomparison Project Phase 5 (CMIP5) models using model output statistics (MOS) for the years 1961–2005 in the upper Han River basin. A series of statistical metrics, including Pearson’s correlation coefficient (PCC), root mean squared error (RMSE), and relative bias (Rbias), were used for evaluation and comparative analyses. Moreover, the BMA and the best ML downscaling model were used to downscale precipitation in the 21st century under Representative Concentration Pathway 4.5 (RCP4.5) and RCP8.5 scenarios. The results show the following: (1) The performance of the BMA ensemble simulation is clearly better than that of the individual models and the simple mean model ensemble (MME). The PCC reaches 0.74, and the RMSE is reduced by 28%–60% for all the GCMs and 33% compared to the MME. (2) The downscaled models greatly improved station simulation performance. Support vector machine for regression (SVR) was superior to multilayer perceptron (MLP) and random forest (RF). The downscaling results based on the BMA ensemble simulation and SVR models were regarded as the best performing overall (PCC, RMSE, and Rbias were 0.82, 35.07, mm and −5.45%, respectively). (3) Based on BMA and SVR models, the projected precipitations show a weak increasing trend on the whole under RCP4.5 and RCP8.5. Specifically, the average rainfall during the mid- (2040–2069) and late (2070–2099) 21st century increased by 3.23% and 1.02%, respectively, compared to the base year (1971–2000) under RCP4.5, while they increased by 4.25% and 8.30% under RCP8.5. Additionally, the magnitude of changes during winter and spring was higher than that during summer and autumn. Furthermore, future work is recommended to study the improvement of downscaling models and the effect of local climate.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3