Classification of Bioinformatics EEG Data Signals to Identify Depressed Brain State Using CNN Model

Author:

Thakare Anuradha1ORCID,Bhende Manisha2ORCID,Deb Nabamita3ORCID,Degadwala Sheshang4ORCID,Pant Bhasker5ORCID,Kumar Yekula Prasanna6ORCID

Affiliation:

1. Department of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune, India

2. Marathwada Mitra Mandal's Institute of Technology, Pune, India

3. Department of Information Technology, Gauhati University, Assam, India

4. Department of Computer Engineering, Sigma Institute of Engineering, India

5. Computer Science & Engineering, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India

6. Department of Mining Engineering, College of Engineering and Technology, Bule Hora University, Blue Hora, 144 Oromia Region, Ethiopia

Abstract

Patients suffering from severe depression may be precisely assessed using online EEG categorization and their progress tracked over time, minimizing the risk of danger and suicide. Online EEG categorization systems, on the other hand, suffer additional challenges in the absence of empirical oversight. A lack of effective decoupling between brain regions and neural networks occurs during brain disease attacks, resulting in EEG data with poor signal intensity, high noise, and nonstationary characteristics. CNN employs momentum SGD optimization. By using a tiny momentum decay factor, the literature’s starting strategy, and the same batch normalization, this work attempts to decrease model error. Before being utilized to form a training set, samples are shuffled, followed by validation and testing on the new samples in the set. An online EEG categorization system driven by a convolution neural network has been developed to do this. The approach is applied directly to the EEG input and is able to accurately and quickly identify depressed states without the need for preprocessing or feature extraction. The healthy control group and the depression control group had accuracy, sensitivity, and specificity of 99.08 percent, 98.77 percent, and 99.42 percent, respectively, in experiments on depression evaluation based on publicly accessible data. The machine learning technique based on feature extraction is often getting more and more complex, making it only suited for offline EEG categorization. While neural networks have become increasingly important in the study of artificial intelligence in recent years, they are still essentially black-box function approximations with limited interpretability. In addition, quantitative study of the neural network shows that depressed patients and healthy persons have remarkable dissimilarity between the right and left temporal lobe brain regions.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3