Dynamic Simulation Analysis of the Antiswing Device for Ship-Mounted Batch Transfer Hanging Basket

Author:

Wang Jianli123ORCID,Li Haolin3,Wang Shenghai1ORCID,Chen Haiquan1ORCID,Sun Yuqing1

Affiliation:

1. College of Marine Engineering, Dalian Maritime University, Dalian 116026, China

2. College of Shipping, Bohai University, Jinzhou 121013, China

3. DSIC Bohai Shipbuilding Industry Co., Ltd., Huludao 125004, China

Abstract

When the rescue vessels use the hanging basket to transfer the wounded at sea, under the action of waves, the ship causes the hanging basket to swing significantly. To prevent the second injury to the wounded caused by the large swing of hanging basket, a rope-driven rigid-flexible hybrid hanging basket antiswing control system is designed, the control principle of the system is introduced, and an accurate dynamics model of the system is established based on the D’Alembert principle, the rigid-flexible hybrid model is used to the antiswing control and simulation of the ship-mounted batch transfer hanging basket for the first time. Analyzed its control principle and simulate the variations in length, velocity, acceleration, and force changes of the control ropes. By installing rigid bal-hinge telescopic sleeve, the simulation results indicate that the indicators of the driving ropes are smooth and continuous and the value changes are also within a suitable range. The force on the four control ropes has been reduced by ∼24.1%, 23%, 26.4%, and 25.1%, resulting in the force that is more reasonable and enhancing the safety of hanging basket system. The hanging basket antiswing device is capable of compensating for rolling and pitching motions at sea and has a strong impact on swinging.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3