Novel and Facile Synthesis of Carbon Quantum Dots from Chicken Feathers and Their Application as a Photocatalyst to Degrade Methylene Blue Dye

Author:

Imran Din Muhammad1ORCID,Ahmed Mahmood2ORCID,Ahmad Muhammad2ORCID,Saqib Shahab3,Mubarak Warda1,Hussain Zaib1,Khalid Rida1,Raza Hussain2,Hussain Tajamal1

Affiliation:

1. Centre for Physical Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan

2. Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan

3. Mining Engineering Department, University of Engineering and Technology, Lahore, Pakistan

Abstract

Methylene blue (MB) is a most commonly used synthetic dye in the textile industry. It is an extremely carcinogenic phenothiazine derivative and therefore needs to be removed from the water bodies. In the present study, a single-step hydrothermal novel synthesis of carbon quantum dots (CQDs) extracted from biomass of chicken feathers has been performed, and the synthesized CQDs were applied to remove MB present in the aqueous samples. A number of techniques such as ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) were used to characterize the samples for the conformity purposes. SEM and XRD analysis showed that CQDs are highly crystalline and have spherical structures with an average particle diameter of 35 nm. In the presence of 0.2 g of synthesized CQDs, MB dye degraded drastically under the sunlight. The rate of degradation was studied by determining the absorbance of the degraded sample with time relevant to untreated sample. The % degradation achieved during first 60 min of time was approximately 92% which increased minimally to a value of only 95% after 100 min of time. The ease of synthesis of carbon dots at low cost contributes hugely to their utilizations as an efficient photocatalyst for the degradation of aqueous pollutants. The opted approach to synthesize CQDs is cost-effective and eco-friendly and demonstrates excellent potential to remove MB from the aqueous samples.

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3