Novel In Situ Fabrication of Fe-Doped Zinc Oxide/Tin Sulfide Heterostructures for Visible-Light-Driven Photocatalytic Degradation of Methylene Blue

Author:

Dharmana Govinda1ORCID,Gurugubelli Thirumala Rao1ORCID,Viswanadham Balaga1ORCID,Bathula Babu2ORCID,Yoo Kisoo2ORCID

Affiliation:

1. Department of Basic Sciences and Humanities, GMR Institute of Technology, GMR Nagar, Rajam 532127, Andhra Pradesh, India

2. School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

Using a hydrothermal synthesis process, Fe-doped ZnO/SnS nanostructures were created and a variety of analytical methods were used to describe their characteristics. X-ray diffraction patterns were employed to confirm the hexagonal and orthorhombic crystal structures of ZnO and SnS, respectively. Nanorods and nanoparticle clouds were visible in TEM pictures, and XPS investigation verified that the dopant Fe ions were in the 3+ oxidation state. Additionally, absorption spectroscopy revealed a decrease in the energy bandgap with an increase in Fe content, and photoluminescence analysis demonstrated that the ZSF3 sample significantly reduced the rate of recombination of charge carriers. Impressively, the optimized sample (ZSF3) displayed 95.8% more photocatalytic activity during the 120 min degradation of MB dye. This study demonstrated that an easy hydrothermal procedure, carried out at 220°C for 12 hours, may be used to create iron-doped ZnO/SnS nanocomposites. The tunable energy bandgap characteristics of heterogeneous semiconducting materials and the effective charge carrier separation were thought to be the causes of the increased photocatalytic activity. Furthermore, the heterostructure of charge carriers was proposed to facilitate photocatalytic activity when exposed to light.

Funder

GMR Institute of Technology

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3