Affiliation:
1. Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
Abstract
The work in this paper proposes the hybridisation of the well-established strength Pareto evolutionary algorithm (SPEA2) and some commonly used surrogate models. The surrogate models are introduced to an evolutionary optimisation process to enhance the performance of the optimiser when solving design problems with expensive function evaluation. Several surrogate models including quadratic function, radial basis function, neural network, and Kriging models are employed in combination with SPEA2 using real codes. The various hybrid optimisation strategies are implemented on eight simultaneous shape and sizing design problems of structures taking into account of structural weight, lateral bucking, natural frequency, and stress. Structural analysis is carried out by using a finite element procedure. The optimum results obtained are compared and discussed. The performance assessment is based on the hypervolume indicator. The performance of the surrogate models for estimating design constraints is investigated. It has been found that, by using a quadratic function surrogate model, the optimiser searching performance is greatly improved.
Subject
General Engineering,General Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献