Transfer Path Analysis and Contribution Evaluation Using SVD- and PCA-Based Operational Transfer Path Analysis

Author:

Cheng Wei12ORCID,Blamaud Diane23,Chu Yapeng12,Meng Lei4,Lu Jingbai12,Basit Wajid Ali12

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China

2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China

3. Arts et Métiers Paris Tech, Paris 75000, France

4. School of Automation, Wuhan University of Technology, Wuhan 430070, Hubei, China

Abstract

To quantitatively identify the transfer paths and evaluate path contributions of shell structures, an singular value decomposition- (SVD-) and principal component analysis- (PCA-) based operational transfer path analysis method is constructed and studied in this paper. Firstly, SVD is used to determine the contribution of each path and reduce crosstalk. Secondly, PCA is applied to reduce the influence of unwanted frequency components and thus reduce noises. This allows the presented OTPA to be more accurate than its traditional counterpart. Once the transmissibility function is obtained, the response synthesis is determined, and the transfer path analysis and path contribution evaluation can be effectively carried out. Numerical and experimental case studies are carried out to validate and test the performance of the presented method. Furthermore, a comprehensive observing the influences of correlation between sources and distance of sources and receiver is also provided. Generally, this paper provides accurate transfer path analysis and path contributions for mechanical systems, which can benefit vibration and noise monitoring and reduction through vibration reduction structure design for new equipment or vibration damping on the major vibration transfer paths for current equipment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3