Investigations of denoising source separation technique and its application to source separation and identification of mechanical vibration signals

Author:

Cheng Wei12,Zhang Zhousuo1,Lee Seungchul2,He Zhengjia1

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, People’s Republic of China

2. Wu Manufacturing Research Center, Department of Mechanical Engineering, University of Michigan, USA

Abstract

A novel vibration source separation and identification method using the denoising source separation (DSS) technique is proposed for the mixed mechanical vibration signals from engines in ships. Denoising source separation enables us to extract the source signals from the mixed signals without prior knowledge of sources and their mixing mode, and thus the important source information extracted by DSS can be used to monitor or actively control engine noises. Different denoising functions such as energy, skew, kurtosis, and tangential functions in DSS are applied to both simulation studies and experimental data to evaluate their separating performances. The tangential function provides the best outperformance with both numerical study and engineering application. In addition, the effectiveness of the proposed DSS method is validated by correlation analysis and the frequency marker tracking method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3