Affiliation:
1. China University of Mining and Technology (Beijing), Beijing 100083, China
2. Shijiazhuang Coal Mining Machinery Co., Ltd., Shijiazhuang 050000, China
Abstract
The safe and stable operation of roadheader is of great significance to the efficient and rapid production of a coal mine. Health diagnosis based on vibration signals has been studied in bearings and motors. Complex geological conditions and bad working environment lead to the characteristics of nonlinear and time-varying vibration signals of a roadheader. In this paper, a health state analysis method based on reference manifold (RM) learning and improved K-means clustering analysis was proposed; the method was verified by using the real-time collected roadheader cutting reducer fault signal. Firstly, the comparison signal and analysis signal were extracted from the actual collected vibration data of the roadheader, and the referential analysis samples were constructed through time domain and wavelet packet energy analysis. Then, the characteristic structure of the low-dimensional space of the referential analysis samples is obtained by Locally Linear Embedding (LLE), which is a method of manifold learning. Through the improved K-means clustering analysis method, the low-dimensional structure parameters were analyzed and the clustering effect index was obtained, which was used as the health evaluation index (HEI). Finally, the normal distribution model of the health evaluation index is established, and the confidence interval of the health evaluation index is determined, so as to realize the health state analysis of the roadheader and realize the fault warning function. Through the analysis of data of three sensors, the results show that the roadheader failed on the 15th day, which is consistent with the actual working condition. Through practical analysis, the effectiveness of the method was verified and provided a kind of fault analysis idea and method for equipment working under complex working conditions and the theoretical basis for fault type analysis.
Funder
National Basic Research Program of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献