Containing Misinformation Spread: A Collaborative Resource Allocation Strategy for Knowledge Popularization and Expert Education

Author:

Li Linhong1ORCID,Huang Kaifan1ORCID,Yang Xiaofan1ORCID

Affiliation:

1. School of Big Data & Software Engineering, Chongqing University, Chongqing, China

Abstract

With the prevalence of online social networks, the potential threat of misinformation has greatly enhanced. Therefore, it is significant to study how to effectively control the spread of misinformation. Publishing the truth to the public is the most effective approach to controlling the spread of misinformation. Knowledge popularization and expert education are two complementary ways to achieve that. It has been proven that if these two ways can be combined to speed up the release of the truth, the impact caused by the spread of misinformation will be dramatically reduced. However, how to reasonably allocate resources to these two ways so as to achieve a better result at a lower cost is still an open challenge. This paper provides a theoretical guidance for designing an effective collaborative resource allocation strategy. First, a novel individual-level misinformation spread model is proposed. It well characterizes the collaborative effect of the two truth-publishing ways on the containment of misinformation spread. On this basis, the expected cost of an arbitrary collaborative strategy is evaluated. Second, an optimal control problem is formulated to find effective strategies, with the expected cost as the performance index function and with the misinformation spread model as the constraint. Third, in order to solve the optimal control problem, an optimality system that specifies the necessary conditions of an optimal solution is derived. By solving the optimality system, a candidate optimal solution can be obtained. Finally, the effectiveness of the obtained candidate optimal solution is verified by a series of numerical experiments.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3