Dynamic selection of clarification channels in rumor propagation containment
-
Published:2023
Issue:8
Volume:20
Page:14995-15017
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Wang Yi1, Zhong Shicheng2, Wang Guo3
Affiliation:
1. School of Big Data and Information Industry, Chongqing City Management College, Chongqing 400000, China 2. Chongqing Longjin Technology Co., Ltd, Chongqing 400000, China 3. College of Mechanical Engineering, Chongqing Wuyi Polytechinc College, Chongqing 400000, China
Abstract
<abstract><p>Rumors refer to spontaneously formed false stories. As rumors have shown severe threats to human society, it is significant to curb rumor propagation. Rumor clarification is an effective countermeasure on controlling rumor propagation. In this process, anti-rumor messages can be published through multiple media channels, including but not limited to online social platforms, TV programs and offline face-to-face campaigns. As the efficiency and cost of releasing anti-rumor information can vary from media channel to media channel, provided that the total budget is limited and fixed, it is valuable to investigate how to periodically select a combination of media channels to publish anti-rumor information so as to maximize the efficiency (i.e., make as many individuals as possible know the anti-rumor information) with the lowest cost. We refer to this issue as the dynamic channel selection (DCS) problem and any solution as a DCS strategy. To address the DCS problem, our contributions are as follows. First, we propose a rumor propagation model to characterize the influences of DCS strategies on curbing rumors. On this basis, we establish a trade-off model to evaluate DCS strategies and reduce the DCS problem to a mathematical optimization model called the DCS model. Second, based on the genetic algorithm framework, we develop a numerical method called the DCS algorithm to solve the DCS model. Third, we perform a series of numerical experiments to verify the performance of the DCS algorithm. Results show that the DCS algorithm can efficiently yield a satisfactory DCS strategy.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference47 articles.
1. X. Chen, N. Wang, Rumor spreading model considering rumor credibility, correlation and crowd classification based on personality, Sci. Rep., 10 (2020), 5887. https://doi.org/10.1038/s41598-020-62585-9 2. Z. Yu, S. Lu, D. Wang, Z. Li, Modeling and analysis of rumor propagation in social networks, Inform. Sci., 580 (2021), 857–873. https://doi.org/10.1016/j.ins.2021.09.012 3. S. T. Malamut, M. Dawes, H. Xie, Characteristics of rumors and rumor victims in early adolescence: Rumor content and social impact, Soc. Dev., 27 (2018), 601–618. https://doi.org/10.1111/sode.12289 4. P. Meel, D. K. Vishwakarma, Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities, Exp. Syst. Appl., 153 (2020), 112986. https://doi.org/10.1016/j.eswa.2019.112986 5. T. Rana, P. Meel, P. Meel, Rumor propagation: A state-of-the-art survey of current challenges and opportunities, in 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), (2019), 64–69. https://doi.org/10.1109/ICCT46177.2019.8969023
|
|