Dynamic selection of clarification channels in rumor propagation containment

Author:

Wang Yi1,Zhong Shicheng2,Wang Guo3

Affiliation:

1. School of Big Data and Information Industry, Chongqing City Management College, Chongqing 400000, China

2. Chongqing Longjin Technology Co., Ltd, Chongqing 400000, China

3. College of Mechanical Engineering, Chongqing Wuyi Polytechinc College, Chongqing 400000, China

Abstract

<abstract><p>Rumors refer to spontaneously formed false stories. As rumors have shown severe threats to human society, it is significant to curb rumor propagation. Rumor clarification is an effective countermeasure on controlling rumor propagation. In this process, anti-rumor messages can be published through multiple media channels, including but not limited to online social platforms, TV programs and offline face-to-face campaigns. As the efficiency and cost of releasing anti-rumor information can vary from media channel to media channel, provided that the total budget is limited and fixed, it is valuable to investigate how to periodically select a combination of media channels to publish anti-rumor information so as to maximize the efficiency (i.e., make as many individuals as possible know the anti-rumor information) with the lowest cost. We refer to this issue as the dynamic channel selection (DCS) problem and any solution as a DCS strategy. To address the DCS problem, our contributions are as follows. First, we propose a rumor propagation model to characterize the influences of DCS strategies on curbing rumors. On this basis, we establish a trade-off model to evaluate DCS strategies and reduce the DCS problem to a mathematical optimization model called the DCS model. Second, based on the genetic algorithm framework, we develop a numerical method called the DCS algorithm to solve the DCS model. Third, we perform a series of numerical experiments to verify the performance of the DCS algorithm. Results show that the DCS algorithm can efficiently yield a satisfactory DCS strategy.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3