Analysis of Heat and Smoke Flow according to Platform Screen Door and Fan Conditions on Fire in Underground Platform

Author:

Jung Ju-Yeong1ORCID,Kang Seung-Gu2,Yoon Hyuk-Jin3ORCID,Shin Kwang-Bok2,Lee Jong-Kwang2ORCID

Affiliation:

1. Korea Railroad Research Institute, Uiwang-si 16105, Republic of Korea

2. Department of Mechanical Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon, Republic of Korea

3. Korea Railroad Research Institute, University of Science and Technology, Uiwang-si 16105, Republic of Korea

Abstract

In this study, a three-dimensional flow analysis of underground subway station was conducted by applying ventilation mode in operation and platform screen door (PSD) opening and closing conditions on fire in underground platform. In order to analyze optimal smoke control and heat removal conditions, the whole underground subway station was set as a model, and a total of eight cases were analyzed by changing the operating conditions of fans for each area under the opening and closing conditions of the PSDs. The analysis results confirmed that the operation mode of supply fan in platform E and I areas located at the third floor underground is more effective than that of exhaust fan in the event of a fire in underground subway station when the PSD is closed. The amount of CO entering a waiting room increased, and the overall CO distribution in the underground subway station was also increased when the PSD is opened. In addition, the CO distributions due to the opening and closing of the PSD were similar to one another when a fire occurred on the platform, which suggests that the operating conditions of the fan affects the formation of CO distribution in the underground subway station rather than the discharge of CO.

Funder

Korea Railroad Research Institute

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3