Abstract
Almost all recently built subway stations are equipped with Platform Screen Doors (PSDs) due to the numerous proven benefits of these systems. In addition, PSDs are now being introduced in existing subway stations, but their operation in conjunction with previously designed ventilation systems in case of emergency should be deeply studied. In this context, the objective of this study is to assess the efficiency of the planned emergency strategy (coupled operation, ventilation systems–PSDs system) in the case of trains on fire stopped at the platform of a subway station retrofitted with PSDs. The approach is based on Computational Fluid Dynamics (CFD) full-scale simulations to predict the airflow, temperature, and pollutant (carbon monoxide—CO and carbon dioxide—CO2) concentrations caused by the fire. The results show the evident contribution of PSDs in stopping the dispersion of hot and polluted air in the subway station during the entire simulation time (20 min from the arrival of the train on fire). Consequently, the investigated emergency strategy (exhausting air both through the “over track system” and the “under platform system”, simultaneously with the opening of the PSDs on the side with the train on fire) assures the safe evacuation of passengers as soon as they have left the subway train. The results indicate that access to the platform is not perturbed by high temperatures or dangerous concentrations of CO and CO2.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献