Two-Tiered Ambulance Dispatch and Redeployment considering Patient Severity Classification Errors

Author:

Park Seong Hyeon1ORCID,Lee Young Hoon1

Affiliation:

1. Department of Industrial Engineering, Yonsei University, D1010, 50, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea

Abstract

A two-tiered ambulance system, consisting of advanced and basic life support for emergency and nonemergency patient care, respectively, can provide a cost-efficient emergency medical service. However, such a system requires accurate classification of patient severity to avoid complications. Thus, this study considers a two-tiered ambulance dispatch and redeployment problem in which the average patient severity classification errors are known. This study builds on previous research into the ambulance dispatch and redeployment problem by additionally considering multiple types of patients and ambulances, and patient classification errors. We formulate this dynamic decision-making problem as a semi-Markov decision process and propose a mini-batch monotone-approximate dynamic programming (ADP) algorithm to solve the problem within a reasonable computation time. Computational experiments using realistic system dynamics based on historical data from Seoul reveal that the proposed approach and algorithm reduce the risk level index (RLI) for all patients by an average of 11.2% compared to the greedy policy. In this numerical study, we identify the influence of certain system parameters such as the percentage of advanced-life support units among all ambulances and patient classification errors. A key finding is that an increase in undertriage rates has a greater negative effect on patient RLI than an increase in overtriage rates. The proposed algorithm delivers an efficient two-tiered ambulance management strategy. Furthermore, our findings could provide useful guidelines for practitioners, enabling them to classify patient severity in order to minimize undertriage rates.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3