Ambulances Deployment Problems: Categorization, Evolution and Dynamic Problems Review

Author:

Neira-Rodado Dionicio,Escobar-Velasquez John WilmerORCID,McClean SallyORCID

Abstract

In this paper, an analytic review of the recent methodologies tackling the problem of dynamic allocation of ambulances was carried out. Considering that state-of-the-art is moving to deal with more extensive and dynamic problems to address in a better way real-life instances, this research looks to identify the evolution and recent applications of this kind of problem once the basic models are explored. This extensive review allowed us to identify the most recent developments in this problem and the most critical gaps to be addressed. In this sense, it is essential to point out that the dynamic location of emergency medical services (EMS) is nowadays a relevant topic considering its impact on the healthcare system outcomes. Issues related to forecasting, simulation, heterogeneous fleets, robustness, and solution speed for real-life problems, stand out in the identified gaps. Applications of machine learning the deployment challenges during epidemic outbreaks such as SARS and COVID-19 were also explored. At the same time, a proposed notation tries to tackle the fact that the word problem in this kind of work refers to a model on many occasions. The proposed notation eases the comparison between the different model proposals found in the literature.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference154 articles.

1. Digital Human Modeling. Applications in Health, Safety, Ergonomics, and Risk Management

2. The Inverting Pyramid: Pension Systems Facing Demographic Challenges in Europe and Central Asia;Schwarz,2014

3. Health System Transformation through Research Innovation;Tamblyn;HealthcarePapers,2016

4. Ambulance location and relocation problems with time-dependent travel times

5. Relocalización de vehículos en servicios de emergencias médicas: una revisión

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3