Soil Nutrient Balance and Soil Fertility Status under the Influence of Fertilization in Maize-Wheat Cropping System in Nepal

Author:

Rawal Nabin12ORCID,Pande Keshab Raj2,Shrestha Renuka3,Vista Shree Prasad1

Affiliation:

1. National Soil Science Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal

2. Department of Soil Science and Agri-engineering, Agriculture and Forestry University (AFU), Rampur, Chitwan, Nepal

3. National Agronomy Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal

Abstract

Soil nutrient balance is affected by nutrient management in crops. A poor nutrient management technique results in an imbalance in the soil nutrient status which could have a long-term negative impact on crop production. The current study was carried out to assess the effect of different rates of nitrogen (N), phosphorus (P), and potassium (K) on soil nutrient balance in a maize-wheat cropping system in Cambisols of Khumaltar, Lalitpur, Nepal during 2019/20 and 2020/21. The experiment included three-factor randomized complete block design with three doses of each N, P, and K which was replicated three times. There was a remarkable change in soil pH, soil organic carbon (SOC), and total N, P, and K contents of soil over a period of time with the application of different doses of NPK. Soil pH changed from 5.98 to 5.53, SOC increased from 11.7 to 16.8 g·kg−1, total N decreased from 1264 to 1177 mg·kg−1, available P2O5 declined from 214 to 63.6 mg·kg−1, and available K2O decreased from 71.7 to 24.8 mg·kg−1 with varying rates of NPK after four cropping seasons. Furthermore, partial, apparent, and net N, P, K balance were predominantly negative in all the fertilizer treatments, but the magnitude was lower under higher nutrient rates and positive partial N balance was noticed in higher N levels. The depletion of native P and K pools even at higher application rates was attributed to higher crop removal over time as compared to inputs. Therefore, continuous application of balanced fertilizers is crucial in maintaining the fertility of soil and productivity of crops.

Funder

Nepal Agricultural Research Council

Publisher

Hindawi Limited

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3