Shear Stress Counteracts Endothelial CX3CL1 Induction and Monocytic Cell Adhesion

Author:

Babendreyer Aaron1ORCID,Molls Lisa1ORCID,Dreymueller Daniela1ORCID,Uhlig Stefan1ORCID,Ludwig Andreas1ORCID

Affiliation:

1. Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany

Abstract

Flow conditions critically regulate endothelial cell functions in the vasculature. Reduced shear stress resulting from disturbed blood flow can drive the development of vascular inflammatory lesions. On endothelial cells, the transmembrane chemokine CX3CL1/fractalkine promotes vascular inflammation by functioning as a surface-expressed adhesion molecule and by becoming released as soluble chemoattractant for monocytic cells expressing the receptor CX3CR1. Here, we report that endothelial cells from human artery, vein, or microvasculature constitutively express CX3CL1 when cultured under static conditions. Stimulation with TNFαunder static or very low shear stress conditions strongly upregulates CX3CL1 expression. By contrast, CX3CL1 induction is profoundly reduced when cells are exposed to higher shear stress. When endothelial cells were grown and subsequently stimulated with TNFαunder low shear stress, strong adhesion of monocytic THP-1 cells to endothelial cells was observed. This adhesion was in part mediated by transmembrane CX3CL1 as demonstrated with a neutralizing antibody. By contrast, no CX3CL1-dependent adhesion to stimulated endothelium was observed at high shear stress. Thus, during early stages of vascular inflammation, low shear stress typically seen at atherosclerosis-prone regions promotes the induction of endothelial CX3CL1 and monocytic cell recruitment, whereas physiological shear stress counteracts this inflammatory activation of endothelial cells.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3