Context Adaptation of Fuzzy Inference System-Based Construction Labor Productivity Models

Author:

Tsehayae Abraham Assefa1,Fayek Aminah Robinson2ORCID

Affiliation:

1. School of Civil and Environmental Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Room 206, AAiT Main Building, P.O. Box 385, Addis Ababa, Ethiopia

2. Department of Civil and Environmental Engineering, Hole School of Construction Engineering, University of Alberta, 7-287 Donadeo Innovation Centre for Engineering, Edmonton, AB, Canada T6G 1H9

Abstract

Construction labor productivity (CLP) is one of the most studied areas in the construction research field, and several context-specific predictive models have been developed. However, CLP model development remains a challenge, as the complex impact of multiple subjective and objective influencing variables have to be examined in various project contexts while dealing with limited data availability. On the other hand, lack of a framework for adapting existing or original models from one context to other contexts limits the possibility of reusing existing models. Such challenges are addressed in this paper through the development of a context adaptation framework. The framework is used to transfer the knowledge represented in fuzzy inference (FIS) based CLP models from one context to another, by using linear and nonlinear evolutionary based transformation of the membership functions combined with sensitivity analysis of fuzzy operators and defuzzification methods. Using four context-specific CLP models developed for concreting activity under industrial, warehouse, high-rise, and institutional building project contexts, the framework was implemented, and the prediction capability of the adapted models was evaluated based on their prediction similarity with the original models. The results showed that linearly adapted CLP models for industrial and institutional contexts and nonlinearly adapted CLP models for warehouse and high-rise contexts provide a similar prediction capability with the original models. The proposed context adaptation framework and findings from this paper address the limitations in past context adaptation research by examining a practical context-sensitive application problem and further examining the role of fuzzy operators and defuzzification methods. The findings assist researchers and industry practitioners to take full advantage of existing FIS-based models in the study of new contexts, for which data availability might be limited.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction SMEs labour productivity: causal layered analysis;Journal of Engineering, Design and Technology;2023-08-16

2. Modeling labor costs using artificial intelligence tools;International Journal of Building Pathology and Adaptation;2022-10-04

3. Review of construction labor productivity factors from a geographical standpoint;International Journal of Construction Management;2021-05-04

4. Fuzzy Logic and Fuzzy Hybrid Techniques for Construction Engineering and Management;Journal of Construction Engineering and Management;2020-07

5. Modelling labour productivity using SVM and RF: a comparative study on classifiers performance;International Journal of Construction Management;2020-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3