Methodological Framework for Estimating the Correlation Dimension in HRV Signals

Author:

Bolea Juan12,Laguna Pablo12,Remartínez José María34,Rovira Eva34,Navarro Augusto345,Bailón Raquel12

Affiliation:

1. Communications Technology Group (GTC), Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain

2. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain

3. Anaesthesiology Service, Miguel Servet University Hospital, 50009 Zaragoza, Spain

4. Medicine School, University of Zaragoza, 50009 Zaragoza, Spain

5. Aragón Health Sciences Institute (IACS), 50009 Zaragoza, Spain

Abstract

This paper presents a methodological framework for robust estimation of the correlation dimension in HRV signals. It includes (i) a fast algorithm for on-line computation of correlation sums; (ii) log-log curves fitting to a sigmoidal function for robust maximum slope estimation discarding the estimation according to fitting requirements; (iii) three different approaches for linear region slope estimation based on latter point; and (iv) exponential fitting for robust estimation of saturation level of slope series with increasing embedded dimension to finally obtain the correlation dimension estimate. Each approach for slope estimation leads to a correlation dimension estimate, calledD^2,D^2, andD^2max.D^2andD^2maxestimate the theoretical value of correlation dimension for the Lorenz attractor with relative error of 4%, andD^2with 1%. The three approaches are applied to HRV signals of pregnant women before spinal anesthesia for cesarean delivery in order to identify patients at risk for hypotension.D^2keeps the 81% of accuracy previously described in the literature whileD^2andD^2maxapproaches reach 91% of accuracy in the same database.

Funder

The Ministerio de Ciencia e Innovación

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3