Optimal Timing Selection Approach to Moving Target Defense: A FlipIt Attack-Defense Game Model

Author:

Tan Jing-lei12ORCID,Zhang Heng-wei12ORCID,Zhang Hong-qi12,Lei Cheng12ORCID,Jin Hui12,Li Bo-wen12,Hu Hao12ORCID

Affiliation:

1. PLA SSF Information Engineering University, Zhengzhou, China

2. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, China

Abstract

The centralized control characteristics of software-defined networks (SDNs) make them susceptible to advanced persistent threats (APTs). Moving target defense, as an effective defense means, is constantly developing. It is difficult to effectively characterize an MTD attack and defense game with existing game models and effectively select the defense timing to balance SDN service quality and MTD decision-making benefits. From the hidden confrontation between the actual attack and defense sides, existing attack-defense scenarios are abstractly characterized and analyzed. Based on the APT attack process of the Cyber Kill Chain (CKC), a state transition model of the MTD attack surface based on the susceptible-infective-recuperative-malfunctioned (SIRM) infectious disease model is defined. An MTD attack-defense timing decision model based on the FlipIt game (FG-MTD) is constructed, which expands the static analysis in the traditional game to a dynamic continuous process. The Nash equilibrium of the proposed method is analyzed, and the optimal timing selection algorithm of the MTD is designed to provide decision support for the selection of MTD timing under moderate security. Finally, the application model is used to verify the model and method. Through numerical analysis, the timings of different types of attack-defense strategies are summarized.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3