Affiliation:
1. Center for Informational Biology, University of Electronic Science and Technology of China, Sichuan, China
2. Key Laboratory for Neuroinformation of Ministry of Education, Chengdu 611731, China
Abstract
Polystyrene surface-binding peptides (PSBPs) are useful as affinity tags to build a highly effective ELISA system. However, they are also a quite common type of target-unrelated peptides (TUPs) in the panning of phage-displayed random peptide library. As TUP, PSBP will mislead the analysis of panning results if not identified. Therefore, it is necessary to find a way to quickly and easily foretell if a peptide is likely to be a PSBP or not. In this paper, we describe PSBinder, a predictor based on SVM. To our knowledge, it is the first web server for predicting PSBP. The SVM model was built with the feature of optimized dipeptide composition and 87.02% (MCC = 0.74; AUC = 0.91) of peptides were correctly classified by fivefold cross-validation. PSBinder can be used to exclude highly possible PSBP from biopanning results or to find novel candidates for polystyrene affinity tags. Either way, it is valuable for biotechnology community.
Funder
National Natural Science Foundation of China
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献