Synthesis Optimization of Activated Carbon Driven from Scrap Tire for Adsorbent Yield and Methylene Blue Removal under Response Surface Methodology

Author:

Kassahun Estifanos12ORCID,Tibebu Solomon345ORCID,Tadesse Yobsen2,Awish Nigist6

Affiliation:

1. Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia

2. Food and Beverage Industry Research and Development Center, Addis Ababa, Ethiopia

3. Department of Environmental Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia

4. Sustainable Energy Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia

5. Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia

6. Ethiopian Conformity Assessment Enterprise, Addis Ababa, Ethiopia

Abstract

This study aimed to investigate the synthesis optimization of activated carbon-driven scrap tires for adsorbent yield and methylene blue removal under response surface methodology. The scrap tire sample was activated by KOH using ethanol as a solvent. The optimized activated carbon was characterized using proximate analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), and Brunauer Emmett Teller (BET) method. The activated carbon was demineralized using 5 M NaOH +  98% H2SO4 (1 : 1) as a solvent to enhance the surface area. Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models were used to check the adsorption isotherm. The adsorption kinetics was checked using pseudo-first-order and pseudo-second-order models. Weber-Morris intraparticle diffusion model was used to study the diffusion mechanism. The optimum impregnation ratio, impregnation time, and carbonization temperature for synthesizing the activated carbon were 2 g/g, 12 hr, and 700°C, respectively. The moisture content, volatile matter, ash content, fixed carbon, and bulk density of the activated carbon were 6.13%, 9.42%, 5.34%, 79.11%, and 0.89 mg/L, respectively. The surface area of optimized activated carbon was enhanced by demineralization process and increased from 53 m2/g to 260.26 m2/g. Temkin adsorption isotherm with R2 values of 0.982 and pseudo-second-order adsorption kinetics with R2 values of 0.999 best fits the experimental data respectively. Intraparticle diffusion was not the only rate-controlling step for both optimized and demineralized (NaOH + H2SO4) activated carbon. It can be concluded that the optimized and demineralized activated carbon derived from scrap tires has a promising potential to be used as a low-cost adsorbent in developing countries including Ethiopia. However, further investigation needs to be conducted before scaling up at industrial level.

Funder

Addis Ababa Science and Technology University

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3