Research on System Economic Operation and Management Based on Deep Learning

Author:

Wangtao 1,Zheng Zhenzhu2,Wang Peiyuan3,Liu Xiaobin45ORCID

Affiliation:

1. National University of Malaysia, Bangi Selangor 43600, Malaysia

2. University of Malaysia, Kuala Lumpur 59200, Malaysia

3. Wenzhou-KEAN University, Wenzhou 325000, China

4. Qingdao Conson Development (Group) Co.,Ltd, Qingdao 266071, China

5. Shandong University, Jinan 250100, China

Abstract

It is of great significance to accurately predict the operation of the system economy, analyze the gains and losses of macrocontrol policies, evaluate the operation quality of the economic system, and correctly formulate the future development plan and strategy. This paper introduces the deep belief network, which has attracted much attention in the field of deep learning in recent years, into the research of system economic operation and management. This method solves the problems of slow training and learning speed, easy to fall into local minima and insufficient generalization of BP artificial neural network in the research of system economic operation and management. Taking the consumer price index and total import and export volume of F Province as the research object, the experiment proves that DBN has better application in system economic operation and management than BP neural network and vector autoregressive analysis. This paper analyzes and compares the modeling performance of DBN, BP neural network, and VaR method from many aspects, such as prediction accuracy, training convergence speed, and pretraining with or without samples. Relevant empirical results show that DBN has better economic prediction performance than BP neural network and ver. On the other hand, DBN can effectively use nonstandard samples to pretrain network weight parameters. Therefore, DBN is a better operation and management modeling means of economic system, with excellent practicability and application, and is expected to be popularized and applied in the field of economic forecasting.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3