Effect of Carbon Modification on the Electrical, Structural, and Optical Properties ofTiO2Electrodes and Their Performance in Labscale Dye-Sensitized Solar Cells

Author:

Taziwa R.1,Meyer E. L.1,Sideras-Haddad E.2,Erasmus R. M.2,Manikandan E.3,Mwakikunga B. W.45

Affiliation:

1. Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa

2. Centerof Excellencein Strong Mterials, School of Physics, University of Witwatersrand, Braamfontein 2000, Johannesburg, South Africa

3. Nano Research Centre, PNTC, B. S. Abdur Rahman University, Chennai 600048, India

4. CSIR National Centre for Nano-Structured Materials, P. O. Box 395, Pretoria 001, South Africa

5. Department of Physics, University of Malawi-The Polytechnic, Private Bag 303, Chichiri, Blantyre 3, Malawi, South Africa

Abstract

Carbon-modified titanium dioxide nanoparticles (C:TiO2NPs) have been synthesized by ultrasonic nebulizer spray pyrolysis (USP) and pneumatic spray pyrolysis (PSP) techniques. HRTEM on the NPs shows difference in lattice spacing in the NP structures prepared by the two methods—2.02 Å for the USP NPs and an average of 3.74 Å for the PSP NPs. The most probable particle sizes are 3.11 nm and 5.5 nm, respectively. Raman spectroscopy supported by FTIR confirms the TiO2polymorph to be anatase with the intense phonon frequency at 153 cm−1blue-shifted from 141 cm−1ascribed to both carbon doping and particle size. A modified phonon confinement model for nanoparticles has been used to extract phonon dispersion and other parameters for anatase for the first time. Electronic measurements show “negative conductance” at some critical bias voltage, which is characteristic ofn-type conductivity in the carbon-doped TiO2NPs as confirmed by the calculated areas under theI-Vcurves, a property suited for solar cell applications. Practical solar cells built from carbon-doped TiO2electrodes show up to 1.5 times improvement in efficiency compared to pure TiO2electrodes of similar construction.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3