Molecular photovoltaics that mimic photosynthesis

Author:

Grätzel Michael1

Affiliation:

1. 1Ecole Polytechnique Fédéral, CH-1015 Lausanne, Switzerland

Abstract

Learning from the concepts used by green plants, we have developed a photovoltaic cell based on molecular light absorbers and mesoporous electrodes. The sensitized nanocrystalline injection solar cell employs organic dyes or transition-metal complexes for spectral sensitization of oxide semiconductors, such as TiO2, ZnO, SnO2, and Nb2O5. Mesoporous films of these materials are contacted with redox electrolytes, amorphous organic hole conductors, or conducting polymers, as well as inorganic semiconductors. Light harvesting occurs efficiently over the whole visible and near-IR range due to the very large internal surface area of the films. Judicious molecular engineering allows the photoinduced charge separation to occur quantitatively within femtoseconds. The certified overall power conversion efficiency of the new solar cell for standard air mass 1.5 solar radiation stands presently between 10 and 11. The lecture will highlight recent progress in the development of solar cells for practical use. Advancement in the understanding of the factors that govern photovoltaic performance, as well as improvement of cell components to increase further its conversion efficiency will be discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3