EGCG Protects against 6-OHDA-Induced Neurotoxicity in a Cell Culture Model

Author:

Chen Dan1,Kanthasamy Anumantha G.2,Reddy Manju B.1

Affiliation:

1. Department of Food Sciences and Human Nutrition, Iowa State University, 220 Mackay Hall, Ames, IA 50010, USA

2. Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA

Abstract

Background. Parkinson’s disease (PD) is a progressive neurodegenerative disease that causes severe brain dopamine depletion. Disruption of iron metabolism may be involved in the PD progression.Objective. To test the protective effect of (−)-epigallocatechin-3-gallate (EGCG) against 6-hydroxydopamine- (6-OHDA-) induced neurotoxicity by regulating iron metabolism in N27 cells.Methods. Protection by EGCG in N27 cells was assessed by SYTOX green assay, MTT, and caspase-3 activity. Iron regulatory gene and protein expression were measured by RT-PCR and Western blotting. Intracellular iron uptake was measured using55Fe. The EGCG protection was further tested in primary mesencephalic dopaminergic neurons by immunocytochemistry.Results. EGCG protected against 6-OHDA-induced cell toxicity. 6-OHDA treatment significantly (p<0.05) increased divalent metal transporter-1 (DMT1) and hepcidin and decreased ferroportin 1 (Fpn1) level, whereas pretreatment with EGCG counteracted the effects. The increased55Fe (by 96%,p<0.01) cell uptake confirmed the iron burden by 6-OHDA and was reduced by EGCG by 27% (p<0.05), supporting the DMT1 results. Pretreatment with EGCG and 6-OHDA significantly increased (p<0.0001) TH+cell count (~3-fold) and neurite length (~12-fold) compared to 6-OHDA alone in primary mesencephalic neurons.Conclusions. Pretreatment with EGCG protected against 6-OHDA-induced neurotoxicity by regulating genes and proteins involved in brain iron homeostasis, especially modulating hepcidin levels.

Publisher

Hindawi Limited

Subject

Psychiatry and Mental health,Clinical Neurology,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3