A Machine Learning Centered Approach for Uncovering Excavators’ Last Known Location Using Bluetooth and Underground WSN

Author:

Kumari Sumit1ORCID,Siwach Vikas1ORCID,Singh Yudhvir1ORCID,Barak Dheerdhwaj2ORCID,Jain Rituraj3ORCID

Affiliation:

1. CSE Department, UIET MDU Rohtak, Rohtak, Haryana, India

2. Department of Computer Science & Engineering, Vaish College of Engineering, Rohtak, Haryana, India

3. Department of Electrical and Computer Engineering, Wollega University, Nekemte, Ethiopia

Abstract

Machine learning and data analytics are two of the most popular subdisciplines of modern computer science which have a variety of scopes in most of the industries ranging from hospitals to hotels, manufacturing to pharmaceuticals, mining to banking, etc. Additionally, mining and hospitals are two of the most critical industries where applications when deployed security, accuracy, and cost effectiveness are the major concerns, due to the huge involvement of man and machines. In this paper, the problem of finding out the location of man and machines has been focused on in case of an accident during the mining process. The primary scope of the research is to guarantee that the projected position is near to the real place so that the trained model’s performance can be tested. The solution has been implemented by first proposing the MLAELD (Machine Learning Architecture for Excavators’ Location Detection), in which Bluetooth Low Energy (BLE) beacons have been used for tracking the live locations of excavators preceded by collecting the data of the signal strength mapping from multiple beacons at each specific point in a closed area. Second, machine learning techniques are proposed to develop and train multioutput regression models using linear regression, K-nearest neighbor regression, decision tree regression, and random forest regression. These techniques can predict the live locations of the required persons and machines with a high level of precision from the last beacon strengths received.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference28 articles.

1. The INIEX mine communications systems;P. Delogne

2. Underground mine communications

3. The use of radio in British coal mines;D. J. R. Martin

4. Leaky-feeder radio communication: A historical review

5. EM propagation in tunnels

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3