Affiliation:
1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou 221116, China
Abstract
Coal mining under hard roofs is jeopardized by rock burst-induced hazards. In this paper, mechanisms of hard roof rock burst events and key techniques for their prevention are analyzed from the standpoint of energy evolution within geological conditions typical of the hard roofs found in Chinese coal mines. Equations used to calculate the total strain energy densities of the coal-rock mass and hard roof working face are derived. Moreover, several failure-causing energy evolution rules are analyzed under various conditions. Various rock roof and coal mass thicknesses and strengths are considered, and a method of preventing hard roof rock burst events is proposed. The results obtained show that rock burst events can be facilitated by high stress concentrations, significant accumulation of strain energy in the coal-rock mass, and rapid energy release during roof breakage. The above conditions are subdivided into two classes: energy accumulation and energy release. The total strain energies of the coal mass and working faces in the roof are positively correlated with the roof thickness, roof strength, and coal mass strength. The coal mass strength primarily influences the overall accumulation of energy in the working face, and it also has the largest effect on the total energy release (i.e., the earthquake magnitude).
Funder
Fundamental Research Funds for the Central Universities
Subject
Civil and Structural Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献