Intelligent Detection of Vehicle Driving Safety Based on Deep Learning

Author:

Wang Deyun1ORCID

Affiliation:

1. Changde Vocational Technical College, Changde 415000, China

Abstract

With the continuous increase in the number of cars, traffic safety problems are also becoming more and more serious, whether the driver wears a seat belt to protect the driver’s personal safety so that the problem can be solved in the event of a traffic accident. The author puts forward the research status of deep learning and convolutional neural network, as well as its theory and technology, and conducts in-depth analysis and research, a small target detection algorithm Deconv-SSD based on transposed convolution is proposed, driver area localization algorithm Squeeze-YOLO is based on lightweight model, and driver seat belt detection algorithm is based on semantic segmentation. Deconv-SSD achieves fast vehicle detection through depthwise separable convolution and fusion of multiresolution feature maps and then utilizes the salient features of the front windshield; through the method of lightweight feature extraction and the Squeeze-YOLO algorithm, the rapid positioning of the driver area is realized. Fast segmentation of seat belts is based on semantic segmentation algorithm and pruning technology in the positioning area, and by judging the maximum connected domain area after segmentation, the driver’s seat belt detection is realized. Experiments and data analysis are carried out on the proposed algorithm. When the image resolution is consistent with the feature extraction model, the average accuracy of Deconv-SSD is compared with the original SSD algorithm in the PASCALVOC public dataset, from 77.2% to 79.6%. In the self-made seat belt detection dataset, Squeeze-YOLO can reach 73 FPS when the average accuracy is 99.96%, the semantic segmentation algorithm accelerated by pruning achieves an accuracy of 94.87% at a speed of 305 FPS, and the validity of the experiment is verified.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference23 articles.

1. An edge traffic flow detection scheme based on deep learning in an intelligent transportation system;C. Chen;IEEE Transactions on Intelligent Transportation Systems,2020

2. Real-Time Detection of False Data Injection Attacks in Smart Grid: A Deep Learning-Based Intelligent Mechanism

3. Deep learning based intelligent inter-vehicle distance control for 6g-enabled cooperative autonomous driving;X. Chen;IEEE Internet of Things Journal,2020

4. Intelligent decision model of sports training knowledge based on dynamic deep learning;S. Liang;IPPTA: Quarterly Journal of Indian Pulp and Paper Technical Association,2018

5. Deep learning for safe autonomous driving: current challenges and future directions;K. Muhammad;IEEE Transactions on Intelligent Transportation Systems,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seatbelt Detection Algorithm Improved with Lightweight Approach and Attention Mechanism;Applied Sciences;2024-04-16

2. Driver's Seat Belt Detection Using CNN-SVM: A Hybrid Approach;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3