Seatbelt Detection Algorithm Improved with Lightweight Approach and Attention Mechanism

Author:

Qiu Liankui1,Rao Jiankun1,Zhao Xiangzhe1

Affiliation:

1. School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China

Abstract

Precise and rapid detection of seatbelts is an essential research field for intelligent traffic management. In order to improve the detection precision of seatbelts and speed up algorithm inference velocity, a lightweight seatbelt detection algorithm is proposed. Firstly, by adding the G-ELAN module designed in this paper to the YOLOv7-tiny network, the optimization of construction and reduction of parameters are accomplished, and the ResNet is compressed with the channel pruning approach to decrease computational overheads. Then, the Mish activation function is utilized to replace the Leaky Relu in the neck to enhance the non-linear competence of the network. Finally, the triplet attention module is integrated into the model after pruning to make up for the underlying performance reduction caused by the previous stage and upgrade overall detection precision. The experimental results based on the self-built seatbelt dataset showed that, compared to the initial network, the Mean Average Precision (mAP) achieved by the proposed GM-YOLOv7 was improved by 3.8%, while the volume and the computation amount were lowered by 20% and 24.6%, respectively. Compared with YOLOv3, YOLOX, and YOLOv5, the mAP of GM-YOLOv7 increased by 22.4%, 4.6%, and 4.2%, respectively, and the number of computational operations decreased by 25%, 63%, and 38%, respectively. In addition, the accuracy of the improved RST-Net increased to 98.25%, while the parameter value was reduced by 48% compared to the basic model, effectively improving the detection performance and realizing a lightweight structure.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3