Comparison of the Flexural Performance and Behaviour of Fly-Ash-Based Geopolymer Concrete Beams Reinforced with CFRP and GFRP Bars

Author:

Ahmed Hemn Qader1ORCID,Jaf Dilshad Kakasor1,Yaseen Sinan Abdulkhaleq1

Affiliation:

1. Department of Civil Engineering, Salahaddin University-Erbil, Erbil, Iraq

Abstract

A construction system with high sustainability, high durability, and appropriate strength can be supplied by geopolymer concrete (GPC) reinforced with glass fibre-reinforced polymer (GFRP) bars and carbon fibre-reinforced polymer (CFRP) bars. Few studies deal with a combination of GPC and FRP bars, especially CFRP bars. The present investigation presents the flexural capacity and behaviour of fly-ash-based GPC beam reinforced with two different types of FRP bars: six reinforced geopolymer concrete (RGPC) beams consisting of three specimens reinforced with GFRP bars and the rest with CFRP bars. The beams were tested under four-point bending with a clear span of 2000 mm. The test parameters included the longitudinal-reinforcement ratio and the longitudinal-reinforcement type, including GFRP and CFRP. Ultimate load, first crack load, load-deflection behaviour, load-strain curve, crack width, and the modes of failure were studied. The experimental results were compared with the equations recommended by ACI 440.1R-15 and CSA S806-12 for flexural strength and midspan deflection of the beams. The results show that the reinforcement ratio had a significant effect on the ultimate load capacity and failure mode. The ultimate load capacity of CFRP-RGPC beams was higher than that of GFRP-RGPC, more crack formations were observed in the CFRP-RGPC beams than in the GFRP-RGPC beams, and the crack width in the GFRP-RGPC beams was more extensive than that in the CFRP-RGPC beams. Beams with lower reinforcement ratios experienced a fewer number of crack and a higher value of crack width, while numerous cracks and less value of crack width were observed in beams with higher reinforcement ratio. Beams with the lower reinforcement ratios were more affected by the type of FRP bars, and the deflection in GFRP-RGPC beams was higher than that in CFRP-RGPC beams for the same corresponding load level. ACI 440.1R-15 and CSA S806-12 underestimated the flexural strength and midspan deflection of RGPC beams; however, CSA S806-12 predicted more accurately.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mix design determination procedure for geopolymer concrete based on target strength method;Archives of Civil and Mechanical Engineering;2024-07-03

2. Mechanical characteristics and developing a compressive stress–strain model of geopolymer concrete;Innovative Infrastructure Solutions;2024-07

3. Performance of Beams Incorporating Geopolymer and FRP Bars: A Review;Construction Technologies and Architecture;2024-06-14

4. Mechanical and Thermal Evaluation of Partial Replacement Cement Mortar with Incorporation of Parali Straw Ash;Journal of The Institution of Engineers (India): Series D;2024-05-29

5. Research progress on short-term mechanical properties of FRP bars and FRP-reinforced concrete beams;Journal of Traffic and Transportation Engineering (English Edition);2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3