Mix design determination procedure for geopolymer concrete based on target strength method

Author:

Rathnayaka Madushan,Karunasingha Dulakshi,Gunasekara ChamilaORCID,Law David W.,Wijesundara Kushan,Lokuge Weena

Abstract

AbstractThis study presents the development and validation of a mix design determination procedure for geopolymer concrete to achieve the desired compressive strength. The procedure integrates artificial neural network (ANN) model developed based on a comprehensive data base from literature, data clustering, and parameter optimization techniques to enhance accuracy and reliability. Experimental validation is undertaken to demonstrate the mix design determination procedure’s capability to accurately predict mix designs for geopolymer concrete based on the target compressive strength, validating its efficacy for mix proportion determination. The integration of chemical oxide content in fly ash, curing time, curing temperature, and activator properties results in a 15.9% improvement in prediction accuracy for the training dataset and a 68.3% enhancement for the testing dataset, compared to the base ANN model that includes only the weight of fly ash and activator properties. Employing data clustering techniques enables the identification of prior estimates for the mix design parameters related to specific fly ash types and target compressive strength, streamlining the mix design process by analyzing pertinent data subsets. Parameter optimization ensures refined mix proportions, achieving the desired target strength economically while minimizing material waste and cost. The development of a user interface facilitates easy manipulation of mix designs, catering to users of varying expertise levels. Additional options for deeper insights into geopolymer concrete characteristics can be integrated into the mix design determination procedure. To assess the mix design determination procedure's ability to generalize effectively, a variety of fly ash samples with distinct chemical compositions were utilized, differing from those already present in the database. This approach allows for a thorough evaluation of the mix design determination procedure's performance when presented with fly ash compositions it has not encountered before. By doing so, this provides insights into the adaptability of the mix design determination procedure beyond the limitations of the training and testing datasets.

Funder

Royal Melbourne Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3