Time Allocation and Optimization in Time-Reversal Wireless Powered Communication Networks

Author:

Li Fangwei1,Wu Yue1ORCID,Nie Yifang2,Shi Ce1ORCID

Affiliation:

1. Chongqing Key Laboratory of Mobile Communications Technology, Engineering Research Center of Mobile Communications of the Ministry of Education, School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Chongqing Technology and Business University, Chongqing 400065, China

Abstract

This paper studies optimal resource allocation in the wireless powered communication networks (WPCN) combined with time reversal (TR) in which one hybrid access point (H-AP) broadcasts constant wireless energy to a set of distributed users in the downlink (DL) and receives information from the users via space division multiple access (SDMA) in the uplink (UL). Inevitable interferences will occur when users transmit information in the UL simultaneously and the special space-time focusing of TR is used to suppress the interferences. An efficient protocol is proposed to support wireless energy transfer (WET) and TR in the DL and wireless information transmission in the UL for the proposed TR-WPCN. We optimize the time allocations to the H-AP for DL WET, DL TR, and UL WIT to maximize the sum throughput. Due to the nonconvexity of the studied optimization problem, we optimize variables successively, where the nonconvex optimization problem is transformed into the convex optimization problem. The approximate convex optimization problem can then be solved iteratively combined with the dichotomy method. Simulation results show that the proposed scheme can effectively suppress interferences and improve system performance.

Funder

China Government

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3