Optimal Power Allocation with Sectored Cells for Sum-Throughput Maximization in Wireless-Powered Communication Networks Based on Hybrid SDMA/NOMA

Author:

Maeng JuhyunORCID,Dahouda Mwamba KasongoORCID,Joe InwheeORCID

Abstract

Wireless-powered communication networks (WPCNs) consist of wireless devices (WDs) that transmit information to the hybrid access point (HAP). In this situation, there is interference among WDs that is considered to be noise and causes information loss because of adjacent signals. Moreover, power is limited and can be lost if transmission distance is long. This paper studies sum-throughput maximization with sectored cells for WPCN. We designed a downlink (DL) energy beamforming by sector based on the hybrid space division multiple access (SDMA) and nonorthogonal multiple access (NOMA) approach to maximize the sum throughput. First, a cell is divided into several sectors, and signals from each sector are transmitted to each antenna of the HAP, so that the signals are not adjacent. Further, the HAP decodes the overlapping information of each sector. Next, power allocation is optimized by sector. To optimize power allocation, a constrained optimization problem is formulated and then converted into a nonconstraint optimization problem using the interior penalty method. The optimal solution derives the maximal value to the problem. Power for each sector is optimally allocated according to this optimal solution. Under this consideration, sum-throughput maximization is performed by optimally allocating DL energy beamforming by sector. We analyzed sum throughput and fairness, and then compared them according to the number of sectors. Performance results show that the proposed optimal power allocation by sector using hybrid SDMA/NOMA outperforms the existing equal power allocation by sector in terms of the sum throughput while fairness is also maintained. Moreover, the performance difference between the hybrid approach and SDMA, which optimally allocates power by sector, was about 1.4 times that of sum throughput on average, and the hybrid approach was dominant. There was also no difference in fairness performance.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3