Whole-Exome Sequencing Identified a Novel Homozygous Frameshift Mutation of HPS3 in a Consanguineous Family with Hermansky-Pudlak Syndrome

Author:

Wang Zhao-Xia1ORCID,Liu Yi-Hui1ORCID,Dong Yi23,Li Ya-Li2ORCID,Tang Tie-Yu1ORCID,Fan Liang-Liang23ORCID

Affiliation:

1. Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, China

2. Departments of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, 050051, China

3. Department of Cell Biology, The School of Life Sciences, Central South University, Changsha 410013, China

Abstract

Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder with an autosomal recessive inherited pattern. It is mainly characterized by deficiencies in lysosome-related organelles, such as melanosomes and platelet-dense granules, and leads to albinism, visual impairment, nystagmus, and bleeding diathesis. A small number of patients will present with granulomatous colitis or fatal pulmonary fibrosis. At present, mutations in ten known genetic loci (HPS1–11) have been identified to be the genetic cause of HPS. In this study, we enrolled a consanguineous family who presented with typical HPS phenotypes, such as albinism, visual impairment, nystagmus, and bleeding diathesis. Whole-exome sequencing and Sanger sequencing were applied to explore the genetic lesions of the patient. A novel homozygous frameshift mutation (NM_032383.5, c.1231dupG/p.Aps411GlyfsTer32) of HPS3 was identified and cosegregated in the family members. Furthermore, real-time PCR confirmed that the mutation decreased the expression of HPS3, which has been identified as the disease-causing gene of HPS type 3. According to ACMG guidelines, the novel mutation, resulting in a premature stop codon at amino acid 442, is a pathogenic variant. In summary, we identified a novel mutation (NM_032383.5, c.1231dupG/p.Aps411GlyfsTer32) of HPS3 in a family with HPS. Our study expanded the variant spectrum of the HPS3 gene and contributed to genetic counseling and prenatal genetic diagnosis of the family.

Funder

Natural Science Foundation of Hunan province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3