Deep Ensemble Reinforcement Learning with Multiple Deep Deterministic Policy Gradient Algorithm

Author:

Wu Junta1,Li Huiyun1ORCID

Affiliation:

1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518071, China

Abstract

Deep deterministic policy gradient algorithm operating over continuous space of actions has attracted great attention for reinforcement learning. However, the exploration strategy through dynamic programming within the Bayesian belief state space is rather inefficient even for simple systems. Another problem is the sequential and iterative training data with autonomous vehicles subject to the law of causality, which is against the i.i.d. (independent identically distributed) data assumption of the training samples. This usually results in failure of the standard bootstrap when learning an optimal policy. In this paper, we propose a framework of m-out-of-n bootstrapped and aggregated multiple deep deterministic policy gradient to accelerate the training process and increase the performance. Experiment results on the 2D robot arm game show that the reward gained by the aggregated policy is 10%–50% better than those gained by subpolicies. Experiment results on the open racing car simulator (TORCS) demonstrate that the new algorithm can learn successful control policies with less training time by 56.7%. Analysis on convergence is also given from the perspective of probability and statistics. These results verify that the proposed method outperforms the existing algorithms in both efficiency and performance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3