Enhancing the landing guidance of a reusable launch vehicle by improving genetic algorithm-based deep reinforcement learning using Hybrid Deterministic-Stochastic algorithm

Author:

Nugroho LarasmoyoORCID,Andiarti Rika,Akmeliawati Rini,Wijaya Sastra KusumaORCID

Abstract

The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. However, when compared to an established deterministic controller, it consistently falls short in terms of landing distance accuracy. To address this issue, the HYDESTOC Hybrid Deterministic-Stochastic (a combination of DDPG/deep deterministic policy gradient and PID/proportional-integral-derivative) algorithm was introduced to improve terminal distance accuracy while keeping propellant consumption low. Results from extensive cross-validated Monte Carlo simulations show that a miss distance of less than 0.02 meters, landing speed of less than 0.4 m/s, settling time of 20 seconds or fewer, and a constant crash-free performance is achievable using this method.

Funder

Direktorat Riset and Pengembangan, Universitas Indonesia

Lembaga Ilmu Pengetahuan Indonesia

Kementerian Riset dan Teknologi /Badan Riset dan Inovasi Nasional

Publisher

Public Library of Science (PLoS)

Reference58 articles.

1. Tesla D is, as expected, an AWD Model S but new autopilot features surprise [w / video];S. Blanco;autoblog.com, vol. October, no. 9th,2014

2. applied sciences A Survey on Theories and Applications for Self-Driving Cars Based on Deep Learning Methods;J. Ni;MDPI—Appl. Sci.,2020

3. Why Is Tesla ‘ s Autopilot Feature So Controversial?;J. McCandless;Newsweekcom,2022

4. Review of Deep Reinforcement Learning for Robot Manipulation;H. Nguyen;2019 Third IEEE Int. Conf. Robot. Comput,2021

5. Deep reinforcement learning as control method for autonomous UAVs;K. Kersandt;Theses Univ. Politec. Catalunya—Dep. Aerosp.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3