Transpicuous-Cum-Fouling Resistant Copolymers of 3-Sulfopropyl Methacrylate and Methyl Methacrylate for Optronics Applications in Aquatic Medium and Healthcare

Author:

Mushtaq Shehla1,Ahmad Nasir M.2ORCID,Nasir Habib1ORCID,Mahmood Azhar1,Janjua Hussnain A.3

Affiliation:

1. Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan

2. Polymer Research Group, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan

3. Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan

Abstract

The scope of optical sensors and scanners in aquatic media, fluids, and medical diagnostics has been limited by paucity of transparent shielding materials with antifouling potential. In this research endeavor, facile synthesis, characterization, and bioassay of antifouling transparent functional copolymers are reported. Copolymers of 3-sulfopropyl methacrylate (SPMA) and methyl methacrylate (MMA) were synthesized by free radical polymerization in various proportions. Samples PSM20, PSM30, PSM40, PSM50, and PSM60 contain 20%, 30%, 40%, 50%, and 60% SPMA by weight, respectively. Resultant products were characterized by FTIR and 1H-NMR spectroscopy. The synthesized copolymers have exhibited excellent transparency, i.e., 75% to 88%, as determined by the UV-Vis spectroscopic analysis. Transmittance was decreased from 6% to 2% in these copolymers upon changing the concentration of 3-sulfopropyl methacrylate from 20% to 50% owing to bacterial and algal biofilm formation. Water contact angle values were ranged from 18° to 63° and decreased with the increase in the polarity of copolymers. The surface energy lowest value 58 mJ/m2 and highest value 72 mJ/m2 were calculated for PSM20 and PSM50, respectively, by the Chibowski approach and Young equation. Sample PSM50 has exhibited the highest antibacterial activities, i.e., 18 mm and 19 mm, against Escherichia coli and Staphylococcus aureus, respectively, by the disk diffusion method. Copolymer PSM50 has shown minimum algal adhesion for Dictyosphaerium algae as observed by optical microscopy. This lower bacterial and algal adhesion is attributed to higher concentrations of anionic SPMA monomer that cause electrostatic repulsion between functional groups of the polymer and microorganisms. Thus, the resultant PSM50 product has exhibited good potential for optronics shielding application in aquatic medium and medical diagnostics.

Funder

HEC

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3