A PID Tuning Strategy Based on a Variable Weight Beetle Antennae Search Algorithm for Hydraulic Systems

Author:

Qiao Yujing1ORCID,Fan Yuqi2

Affiliation:

1. School of Mechanical Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China

2. School of Mechanical Power Engineering, Harbin University of Science and Technology, Harbin 150000, China

Abstract

To select reasonable PID controller parameters and improve control performances of hydraulic systems, a variable weight beetle antenna search algorithm is proposed for PID tuning in the hydraulic system. The beetle antennae search algorithm is inspired by the beetle preying habit depending on symmetry antennae on the head. The proposed algorithm added the exponential equation mechanism strategy in the basic algorithm to further improve the searching performance, the convergence speed, and the optimization accuracy and obtain new iteration and an updating method in the global searching and local searching stages. In the PID tuning process, advantages of less parameters and fast iteration are realized in the PID tuning process. In this paper, different dimension functions were tested, and results calculated by the proposed algorithm were compared with other famous algorithms, and the numerical analysis was carried out, including the iteration, the box-plot, and the searching path, which comprehensively showed the searching balance in the proposed algorithm. Finally, the reasonable PID controller parameters are found by using the proposed method, and the tuned PID controller is introduced into the hydraulic system for control, and the time-domain response characteristics and frequency response characteristics are given. The results show that the proposed PID tuning method has good PID parameter tuning ability, and the tuned PID has a good control ability, which makes the hydraulic system achieve the desired effect.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3