Parameter optimization of nonlinear PID controller using RBF neural network for continuous stirred tank reactor

Author:

Shi Xingxi12ORCID,Zhao Hong12,Fan Zheng12

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Automation Technology (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, China

2. College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, China

Abstract

The temperature system of the Continuous Stirred Tank Reactor (CSTR) has the characteristics of strong nonlinearity and uncertain parameters. The linear PID controller makes it difficult to meet CSTR’s control requirements. Nonlinear PID (NPID) can improve the control effect of nonlinear controlled objects, but due to the influence of nonlinear function selection and manual parameter setting, when parameters are uncertain or subject to external interference, the control performance of the system will decrease. To improve the adaptive capability of the NPID controller, the RBF-NPID control algorithm is proposed. The learning ability of RBF neural network is used to adjust NPID parameters online to improve the control performance of the system. In order to verify the effectiveness of the proposed algorithm, a CSTR model was established in MATLAB and algorithm comparison research was carried out. Simulation results show the effectiveness and superiority of the proposed algorithm.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hierarchical Optimal Control for Sulfidation Process in Non-Ferrous Metallurgy CPS;IEEE Transactions on Industrial Cyber-Physical Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3