Component Prediction of Antai Pills Based on One-Dimensional Convolutional Neural Network and Near-Infrared Spectroscopy

Author:

Guo Tuo1ORCID,Xu Fengjie1ORCID,Ma Jinfang2ORCID,Ge Fahuan3ORCID

Affiliation:

1. School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, China

2. Opto-Electronic Department of Jinan University, Guangzhou 510632, China

3. School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China

Abstract

Convolutional neural networks (CNNs) are widely used for image recognition and text analysis and have been suggested for application on one-dimensional data as a way to reduce the need for preprocessing steps. In this study, the performance of one-dimensional convolutional neural network (1DCNN) machine learning algorithm was investigated for regression analysis of Antai pills spectral data. This algorithm was compared with other chemometric methods, including support vector machine regression (SVR) and partial least-square regression (PLSR) methods. The results showed that the 1DCNN model outperformed the PLSR and SVR models with similar data preprocessing for the three analytes (wogonoside, scutellarin, and ferulic acid) in Antai pills. Taking wogonoside as an example, the indices such as the correction coefficient of determination ( R v 2 ), the root mean-squared error of cross validation (RMSECV) for calibration set, the prediction coefficient of determination ( R p 2 ), and the root mean-squared error of prediction (RMSEP) obtained by PLSR modeling were 0.9340, 0.5568, 0.9491, and 0.5088; the indices obtained by SVR modeling were 0.9520, 0.4816, 0.9667, and 0.4117; and the indices obtained by 1DCNN modeling were 0.9683, 0.3397, 0.9845, and 0.2807, respectively. The evaluation metrics of 1DCNN are better than those of PLSR and SVR, and the prediction effect is the best, proving that 1DCNN has a good generalization ability. Especially with outliers of spectra, PLSR’s R p 2 decreased by 0.0181, SVR’s R v 2 decreased by 0.01, and 1DCNN’s R v 2 increased by 0.0009 and R p 2 decreased by 0.0057. The evaluation indices of 1DCNN have no significant change in comparison with no outliers and can still show good performance, which reflects the inclusiveness of the 1DCNN model for outliers. Simultaneously, the feasibility and robustness of the 1DCNN model in the application of near-infrared spectroscopy was verified, which has a certain application value.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3