Research on Shortest Path Planning and Smoothing Without Obstacle Collision Based on Moving Carrier

Author:

Di LingsongORCID,Sun DefengORCID,Qi YahuiORCID,Xiao ZhicaiORCID

Abstract

In response to the challenges of path planning in complex scenarios, to overcome the influence of optimal path determination by the precision of grid map sizes, and to escape the uncertainty in solving by intelligent algorithms, this paper designs a method for obtaining an adjacency matrix based on node planning of shortest path diagrams with polygonal obstacles and then uses the Dijkstra algorithm to get the shortest path. For irregular curved obstacles, an edge straightening method is proposed. To enhance the applicability of the path, this paper introduces the constraint of minimum turning radius. It researches path smoothing under obstacle conditions based on arcs and straight lines, providing practical solutions for different scenarios. Considering the need to maintain a safe distance due to the size of the moving carrier and the deviation in trajectory tracking, this paper conducts an expansion analysis of obstacles. It obtains the trajectory on the arc after edge straight line fitting, followed by further smoothing treatment. The method proposed in this paper demonstrates excellent accuracy and robustness in path planning through simulation verification, proving its practicality and effectiveness in complex environments.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3