A Multi-DOF Manipulator Joint Trajectory Tracking and Monitoring Method Based on Decision Tree

Author:

Wu Qiong1ORCID,Chen Hua2ORCID,Liu Baolong1ORCID

Affiliation:

1. Xi’an Technological University, School of Computer Science and Engineering, Xi’an 710021, China

2. Xi’an Technological University, College of Mechanical and Electrical Engineering, Xi’an 710021, China

Abstract

Understanding trajectory tracking control concerns is crucial for industrial-grade manipulators to provide precise and risk-free operations for the safe environment. Consequently, the robot arms need precise aim for tracking a given target trajectory by the trajectory control input driving torque which can use smart AI-based techniques for precision. Similarly, a decision tree is a soft computing-based method of feature space partitioning which can certainly allow the movement of robots in an accurate manner. The control of robot arms is an important aspect for automating the process of sustainable development. Aiming at the problem of poor tracking accuracy of traditional Multi-Degree-of-Freedom Manipulator Joint Trajectory Monitoring (Multi-DoF MJTM) and long monitoring delay, this article proposes a Multi-DOF manipulator joint trajectory tracking method based on decision tree. The Multi-DoF manipulator is developed for the adaptive control object of the working machine, and it is combined with the output response feature to construct the kinematics model of the Multi-DoF manipulator mechanism of the walking machine. The joint trajectory reconstruction of the running trajectory is used to obtain the joint trajectory deviation of the Multi-DoF manipulator’s running trajectory through the multi-measurement system. Based on this, the Multi-DoF manipulator’s running trajectory joint trajectory tracking control equation is obtained to realize the joint trajectory tracking and monitoring of the manipulator. The features for a safe environment are also integrated. The experimental results show that the proposed method has high accuracy in tracking the trajectory of Multi-DoF manipulator joints, and the time delay for tracking and monitoring the trajectory of manipulator’s joints is also optimized.

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural network-based adaptive sliding mode control for multi-joint manipulator;2023 38th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2023-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3