Application of Regenerative Braking with Optimized Speed Profiles for Sustainable Train Operation

Author:

Allen Leon1,Chien Steven12ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, NJ 07102, Newark, USA

2. School of Transportation Engineering, Chang’an University, Xi’an 710064, China

Abstract

This paper presents a method for synergizing the energy-saving strategies of integrated coasting and regenerative braking in urban rail transit operations. Coasting saves energy by maintaining motion with propulsion disabled, but it induces longer travel time. Regenerative braking captures and reuses the braking energy of the train and could shorten travel time but reduces the time available for coasting, indicating a tradeoff between the two strategies. A simulation model was developed based on fundamental kinematic equations for assessing sustainable train operation with Wayside Energy-Saving Systems (WESSs). The objective of this study is to optimize speed profiles that minimize energy consumption, considering the train schedule and specifications, track alignment, speed limit, and the WESS parameters such as storage limit and energy losses in the transmission lines. The decision variables are the acceleration at each time step of the respective motion regimes. Since the study optimization problem is combinatorial, a Genetic Algorithm was developed to search for the solution. A case study was conducted which examined various scenarios with and without WESS on a segment of an urban rail transit line to test the applicability of the proposed model and to provide a platform for the application of ideas developed in this study. It was determined that synergizing the energy-saving strategies of coasting and regenerative braking yielded the greatest efficiency of the scenarios examined.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference30 articles.

1. Urban Transit Systems and Technology

2. Transportation sector emissions, sources of Greenhouse gas emissions;U.S. Environmental Protection Agency,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3