Long-Term Chronic Intermittent Hypobaric Hypoxia in Rats Causes an Imbalance in the Asymmetric Dimethylarginine/Nitric Oxide Pathway and ROS Activity: A Possible Synergistic Mechanism for Altitude Pulmonary Hypertension?

Author:

Lüneburg Nicole1,Siques Patricia2,Brito Julio2,Arriaza Karem2,Pena Eduardo2,Klose Hans3,Leon-Velarde Fabiola4,Böger Rainer H.1

Affiliation:

1. Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany

2. Institute of Health Studies, Arturo Prat University, Iquique, Chile

3. Department of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany

4. Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy/IIA, Cayetano Heredia University, Lima, Peru

Abstract

Chronic intermittent hypoxia (CIH) and chronic hypoxia (CH) are associated with high-altitude pulmonary hypertension (HAPH). Asymmetric dimethylarginine (ADMA), a NO synthase (NOS) inhibitor, may contribute to HAPH. This study assessed changes in the ADMA/NO pathway and the underlying mechanisms in rat lungs following exposure to CIH or CH simulated in a hypobaric chamber at 428 Torr. Twenty-four adult Wistar rats were randomly assigned to three groups: CIH2x2 (2 days of hypoxia/2 days of normoxia), CH, and NX (permanent normoxia), for 30 days. All analyses were performed in whole lung tissue. L-Arginine and ADMA were analyzed using LC-MS/MS. Under both hypoxic conditions right ventricular hypertrophy was observed (p<0.01) and endothelial NOS mRNA increased (p<0.001), but the phosphorylated/nonphosphorylated vasodilator-stimulated phosphoprotein (VASP) ratio was unchanged. ADMA increased (p<0.001), whereas dimethylarginine dimethylaminohydrolase (DDAH) activity decreased only under CH (p<0.05). Although arginase activity increased (p<0.001) and L-arginine exhibited no changes, the L-arginine/ADMA ratio decreased significantly (p<0.001). Moreover, NOX4 expression increased only under CH (p<0.01), but malondialdehyde (MDA) increased (up to 2-fold) equally in CIH2x2 and CH (p<0.001). Our results suggest that ADMA and oxidative stress likely reduce NO bioavailability under altitude hypoxia, which implies greater pulmonary vascular reactivity and tone, despite the more subdued effects observed under CIH.

Funder

Gobierno Regional de Tarapacá

Publisher

Hindawi Limited

Subject

Pulmonary and Respiratory Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3