Chronic and Intermittent Hypoxia Induce Different Degrees of Myocardial Tolerance to Hypoxia-Induced Dysfunction

Author:

Milano Giuseppina1,Corno Antonio F.1,Lippa Silvio2,Segesser Ludwig K. von1,Samaja Michele3

Affiliation:

1. Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland

2. Institute of Biochemistry and Clinical Biochemistry, Universita' Cattolica del S .Cuore, Rome, Italy;

3. Department of Medicine, Surgery, and Dentistry, University of Milan, San Paolo Hospital, Milan, Italy

Abstract

Chronic hypoxia (CH) is believed to induce myocardial protection, but this is in contrast with clinical evidence. Here, we test the hypothesis that repeated brief reoxygenation episodes during prolonged CH improve myocardial tolerance to hypoxia-induced dysfunction. Male 5-week-old Sprague-Dawley rats (n = 7–9/group) were exposed for 2 weeks to CH (F1O2 = 0.10), intermittent hypoxia (IH, same as CH, but 1 hr/day exposure to room air), or normoxia (N, F1O2 = 0.21). Hearts were isolated, Langendorff perfused for 30 min with hypoxic medium (Krebs-Henseleit, PO2 = 67 mmHg), and exposed to hyperoxia (PO2 = 670 mmHg). CH hearts displayed higher end-diastolic pressure, lower rate-pressure product, and higher vascular resistance than IH. During hypoxic perfusion, anaerobic mechanisms recruitment was similar in CH and IH hearts, but less than in N. Thus, despite differing only for 1 hr daily exposure to room air, CH and IH induced different responses in animal homeostasis, markers of oxidative stress, and myocardial tolerance to reoxygenation. We conclude that the protection in animals exposed to CH appears conferred by the hypoxic preconditioning due to the reoxygenation rather than by hypoxia per se.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3