IR and UV/VIS Spectroscopic Characterization of the Higher Fullerene C76-D2 for Its Quantitative and Qualitative Determination

Author:

Jovanović Tamara1ORCID,Koruga Djuro1,Mitrović Aleksandra1,Stamenković Dragomir1,Dević Gordana2

Affiliation:

1. Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia

2. Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Nemanjina 12, 11000 Belgrade, Serbia

Abstract

The only stable isomer of the higher fullerene C76 of D2 symmetry was isolated from carbon soot by the new and advanced extraction and chromatographic methods and processes. Characterization of the isolated C76-D2 was performed by the IR(KBr) and UV/VIS method in the absorption mode. All of the experimentally observed infrared and electronic absorption bands are in excellent agreement with the theoretical calculations for this fullerene. The molar absorptivity ε and the integrated molar absorptivity Ψ of the observed entire new series of various characteristic, both deconvoluted and convoluted IR absorption bands of the C76-D2 isomer, in different integration ranges were determined. In addition, the molar extinction coefficients of its UV/VIS absorption bands were determined. The obtained novel IR and UV/VIS spectroscopic parameters are significant for the quantitative assessment of C76-D2. All the presented data are important both for its qualitative and quantitative determination, either in natural resources on Earth and in space or in artificially synthesized materials, electronic and optical devices, optical limiters, sensors, polymers, solar cells, nanophotonic lenses, diagnostic and therapeutic agents, pharmaceutical substances, for targeted drug delivery, incorporation of metal atoms, in biomedical engineering, industry, applied optical science, batteries, catalysts and so forth.

Funder

University of Belgrade

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3